Momentum Budget of a Squall Line with Trailing Stratiform Precipitation: Calculations with a High-Resolution Numerical Model

1996 ◽  
Vol 53 (23) ◽  
pp. 3629-3652 ◽  
Author(s):  
Ming-Jen Yang ◽  
Robert A. Houze
2017 ◽  
Author(s):  
Paul W. Miller ◽  
Thomas L. Mote

Abstract. Weakly forced thunderstorms (WFTs), short-lived convection forming in synoptically quiescent regimes, are a contemporary forecasting challenge. The convective environments that support severe WFTs are often similar to those that yield only nonsevere WFTs, and additionally, only a small proportion individual WFTs will ultimately produce severe weather. The purpose of this study is to better characterize the relative severe weather potential in these settings as a function of the convective environment. Thirty near-storm convective parameters for > 200 000 WFTs in the Southeast United States are calculated from a high-resolution numerical forecasting model, the Rapid Refresh (RAP). For each parameter, the relative likelihood of WFT days with at least one severe weather event is assessed along a moving threshold. Parameters (and the values of them) that reliably separate severe-weather-supporting from nonsevere WFT days are highlighted. Only two convective parameters, vertical totals (VT) and total totals (TT), appreciably differentiate severe-wind-supporting and severe-hail-supporting days from nonsevere WFT days. When VTs exceeded values between 24.6–25.1 °C or TTs between 46.5–47.3 °C, severe-wind days were roughly 5 × more likely. Meanwhile, severe-hail days became roughly 10 × more likely when VTs exceeded 24.4–26.0 °C or TTs exceeded 46.3–49.2 °C. The stronger performance of VT and TT is partly attributed to the more accurate representation of these parameters in the numerical model. Under-reporting of severe weather and model error are posited to exacerbate the forecasting challenge by obscuring the subtle convective environmental differences enhancing storm severity.


2011 ◽  
Vol 68 (8) ◽  
pp. 1607-1619 ◽  
Author(s):  
Agnieszka A. Mrowiec ◽  
Stephen T. Garner ◽  
Olivier M. Pauluis

Abstract This paper discusses the possible existence of hurricanes in an atmosphere without water vapor and analyzes the dynamic and thermodynamic structures of simulated hurricane-like storms in moist and dry environments. It is first shown that the “potential intensity” theory for axisymmetric hurricanes is directly applicable to the maintenance of a balanced vortex sustained by a combination of surface energy and momentum flux, even in the absence of water vapor. This theoretical insight is confirmed by simulations with a high-resolution numerical model. The same model is then used to compare dry and moist hurricanes. While it is found that both types of storms exhibit many similarities and fit well within the theoretical framework, there are several differences, most notably in the storm inflow and in the relationship between hurricane size and intensity. Such differences indicate that while water vapor is not necessary for the maintenance of hurricane-like vortices, moist processes directly affect the structure of these storms.


2019 ◽  
Vol 124 (2) ◽  
pp. 1090-1117 ◽  
Author(s):  
Bin Han ◽  
Jiwen Fan ◽  
Adam Varble ◽  
Hugh Morrison ◽  
Christopher R. Williams ◽  
...  

2000 ◽  
Vol 174 ◽  
pp. 277-280
Author(s):  
C. Horellou

AbstractThe probability of plunging orbits is enhanced in groups of galaxies and indeed, observations show that ring galaxies, which are believed to form when a galaxy passes through the center of a larger rotating disk, are often found in small groups. Numerical simulations combined with a knowledge of the large-scale H I distribution provide strong constraints on the dynamical history of these systems and on the identity of the intruder. Here we present a numerical model of the Cartwheel galaxy which supports the suggestion that the most distant companion is the intruder. We also present high-resolution H I observations of the more irregular system Arp 119 that reveal a possible connection to the most distant companion.


2019 ◽  
Vol 7 (11) ◽  
pp. 390 ◽  
Author(s):  
Dechao Hu ◽  
Min Wang ◽  
Shiming Yao ◽  
Zhongwu Jin

Because of special morphologies and complex runoff–tide interactions, the landward floodtide flows in Yangtze Estuary are observed to spill over from the North to the South Branches, carrying a lot of sediment. To quantitatively clarify the spillover problem, a two-dimensional numerical model using a high-resolution channel-refined unstructured grid is developed for the entire Yangtze Estuary from Datong to river mouths (620 km) and part of the East Sea. The developed model ensures a good description of the river-coast-ocean coupling, the irregular boundaries, and local river regimes in the Yangtze Estuary. In tests, the simulated histories of the tidal level, depth-averaged velocity, and sediment concentration agree well with field data. The spillover of sediment in the Yangtze Estuary is studied using the condition of a spring and a neap tide in dry seasons. For a representative cross-section in the upper reach of the North Branch (QLG), the difference of the cross-sectional sediment flux (CSSF) between floodtide and ebbtide durations is 43.85–11.26 × 104 t/day, accounting for 37.5–34.9% of the landward floodtide CSSF. The mechanics of sediment spillover in Yangtze Estuary are clarified in terms of a successive process comprising the source, transport, and drainage of the spillover sediment.


2016 ◽  
Vol 144 (1) ◽  
pp. 371-392 ◽  
Author(s):  
Yujie Pan ◽  
Ming Xue ◽  
Guoqing Ge

Abstract In this study, a new set of reflectivity equations are introduced into the Advanced Regional Prediction System (ARPS) cloud analysis system. This set of equations incorporates double-moment microphysics information in the analysis by adopting a set of diagnostic relationships between the intercept parameters and the corresponding mass mixing ratios. A reflectivity- and temperature-based graupel classification scheme is also implemented according to a hydrometeor identification (HID) diagram. A squall line that occurred on 23 April 2007 over southern China containing a pronounced trailing stratiform precipitation region is used as a test case to evaluate the impacts of the enhanced cloud analysis scheme. The results show that using the enhanced cloud analysis scheme is able to better capture the characteristics of the squall line in the forecast. The predicted squall line exhibits a wider stratiform region and a more clearly defined transition zone between the leading convection and the trailing stratiform precipitation region agreeing better with observations in general, when using the enhanced cloud analysis together with the two-moment microphysics scheme. The quantitative precipitation forecast skill score is also improved.


Sign in / Sign up

Export Citation Format

Share Document